220
Views
27
CrossRef citations to date
0
Altmetric
Original Articles

Prediction of scour depth at piers with debris accumulation effects using linear genetic programming

&
Pages 468-479 | Received 04 Jan 2019, Accepted 13 Feb 2019, Published online: 11 May 2019
 

Abstract

Exact evaluation of scour depth around piers under debris accumulation is crucial for the safe design of pier structures. Experimental studies on scouring around pier bridges with debris accumulation have been conducted to estimate the maximum scour depth using various empirical relationships. However, due to the oversimplification of a complex process, the proposed relationships have not always been able to accurately predict the pier scour depth. This research proposes linear genetic programming (LGP) approach as an extension of the genetic programming to predict the scour depth around bridge piers. Among the artificial intelligence techniques, LGP and locally weighted linear regression (LWLR) models have not been used to predict the scour depth at bridge piers. Literature experimental data were collected and used to develop the models. The performance of the LGP method was compared with gene-expression programming, LWLR, multilinear regression and empirical equations using rigorous statistical criteria. The correlation coefficient (R) and the root mean squared error (RMSE) were (R = 0.962, RMSE =0.31) and (R = 0.885, RMSE =0.542) for the LGP and LWLR, respectively. The results demonstrated the superiority of the LGP method for increasing the accuracy of the predicted scour depth in comparison with the other models.

Disclosure Statement

We are the authors and confirm that there is no conflict of interest.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 226.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.