254
Views
1
CrossRef citations to date
0
Altmetric
Articles

The Choice of Normal-Theory Weight Matrix When Computing Robust Standard Errors in Confirmatory Factor Analysis

&
Pages 861-875 | Published online: 06 May 2019
 

Abstract

Robust standard errors are of central importance in confirmatory factor models. In calculating these statistics a central ingredient is the inverse of the asymptotic covariance matrix of second-order moments calculated under the assumption of normality. Currently, two ways of estimating this matrix are employed in software packages. One approach uses the sample covariance matrix, the other the model-implied covariance matrix. Previous research based on a small confirmatory factor model demonstrated that the latter approach yielded a slight improvement in standard error performance. The present study argues theoretically that the discrepancy between the two approaches increases in models where there are few model parameters relative to p(p+1)/2, where p is the number of observed variables. We present simulation results that support this claim, in both small and large correctly specified models, across a large variety of non-normal conditions. We recommend the model-implied covariance matrix for robust standard error computation.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 53.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 412.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.