232
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Andrographolide attenuates sepsis-induced acute kidney injury by inhibiting ferroptosis through the Nrf2/FSP1 pathway

, , , , , & show all
Pages 156-169 | Received 13 Sep 2023, Accepted 04 Feb 2024, Published online: 22 Mar 2024
 

Abstract

Sepsis is a systemic inflammatory response syndrome caused by infection, which causes renal dysfunction known as sepsis-associated acute kidney injury (S-AKI). Ferroptosis is a form of lipid peroxidation dependent on iron and reactive oxygen species that differs from other forms of programmed cell death at the morphological and biochemical levels. Andrographolide (AG), a natural diterpenoid lactone compound extracted from Andrographis paniculata, has been shown to have therapeutic effects in kidney disease. In this study, we investigated the novel mechanism by which AG attenuates septic acute kidney injury by inhibiting ferroptosis in renal tubular epithelial cells (HK-2) through the Nrf2/FSP1 pathway. Cecum ligation and puncture (CLP)-induced septic rats and lipopolysaccharide (LPS)-induced HK-2 cells were used for in vivo and in vitro experiments. Firstly, in septic rats and HK-2 cells, AG effectively decreased the levels of kidney injury indicators, including blood creatinine, urea nitrogen, and markers of kidney injury such as neutrophil gelatinase-associated lipid transport protein and kidney injury molecule-1 (KIM-1). In addition, AG prevented ferroptotosis, by avoiding the accumulation of iron and lipid peroxidation, and an increase in SLC7A11 and GPX4 in AG-treated HK-2 cells. Furthermore, AG attenuated mitochondrial damage, including mitochondrial swelling, outer membrane rupture, and a reduction in mitochondrial cristae in LPS-treated HK-2 cells. Ferrostatin-1 (Fer-1), a ferroptosis inhibitor, significantly inhibited LPS-induced ferroptosis in HK-2 cells. Importantly, our results confirm that Nrf2/FSP1 is an important pathway for ferroptosis resistance. Nrf2 siRNA hindered the effect of AG in attenuating acute kidney injury and inhibiting ferroptosis. These findings demonstrate that Nrf2/FSP1-mediated HK-2 ferroptosis is associated with AG, alleviates septic acute kidney injury, and indicates a novel avenue for therapeutic interventions in the treatment of acute kidney injury in sepsis.

Conflicts of interest

The authors declare no conflicts of interest.

Data availability

The datasets used or analyzed during this study are available from the corresponding author on reasonable request.

Additional information

Funding

The present study was supported by the National Natural Science Foundation of China (grant No. 81860336).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 940.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.