367
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Effect of reverse manual wheelchair propulsion on shoulder kinematics, kinetics and muscular activity in persons with paraplegia

, , , , , ORCID Icon, & show all
Pages 594-606 | Published online: 15 Feb 2019
 

Abstract

Objective: Shoulder pain after spinal cord injury (SCI) is attributed to increased mobility demands on the arms and negatively impacts independence and quality of life. Repetitive superior and posterior shoulder joint forces produced during traditional wheelchair (WC) locomotion can result in subacromial impingement if unopposed, as with muscular fatigue or weakness. ROWHEELS® (RW), geared rear wheels that produce forward WC movement with backward rim pulling, could alter these forces.

Design: Cross sectional.

Setting: Research laboratory at a rehabilitation hospital.

Participants: Ten manual WC users with paraplegia.

Outcome measures: Propulsion characteristics and right upper extremity/trunk kinematics and shoulder muscle activity were collected during ergometer propulsion: (1) self-selected free speed reverse propulsion with RW, (2) matched-speed reverse (rSW), and (3) forward propulsion (fSW) with instrumented Smartwheels (SW). Inverse dynamics using right-side SW rim kinetics and kinematics compared shoulder kinetics during rSW and fSW.

Results: Free propulsion velocity, cycle distance and cadence were similar during RW, rSW and fSW. Overall shoulder motion was similar except that peak shoulder extension was significantly reduced in both RW and rSW versus fSW. Anteriorly and inferiorly directed SW rim forces were decreased during rSW versus fSW propulsion, but posteriorly and superiorly directed rim forces were significantly greater. Superior and posterior shoulder joint forces and flexor, adductor, and external rotation moments were significantly less during rSW, without a significant difference in net shoulder forces and moments. Traditional propulsive-phase muscle activity was significantly reduced and recovery-phase muscle activity was increased during reverse propulsion.

Conclusion: These results suggest that reverse propulsion may redirect shoulder demands and prevent subacromial impingement, thereby preventing injury and preserving independent mobility for individuals with paraplegia.

Acknowledgements

The funding source had no input into the study design nor in the collection, analysis or interpretation of data; in the writing of the manuscript; nor in the decision to submit the manuscript for publication.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 184.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.