111
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

miR-128 regulated the proliferation and autophagy in porcine adipose-derived stem cells through targeting the JNK signaling pathway

ORCID Icon, , , , , , , , & show all
Pages 196-201 | Received 29 Feb 2020, Accepted 29 Jul 2020, Published online: 10 Aug 2020
 

Abstract

Purpose

microRNA-128 (miR-128), a brain-enriched microRNA, has been reported to play a crucial role in the treatment of diseases. The c-Jun N-terminal kinase (JNK) signaling pathway exerts various biological functions such as regulation of cell proliferation, differentiation and apoptosis. In this study, we investigated the role of the miRNA-128-JNK signaling pathway in proliferation, apoptosis and autophagy of porcine adipose-derived stem cells (ASCs).

Methods

After over-expressing miR-128 in porcine ASCs, cell proliferation was determined by 2,3-Bis-(2-Methoxy-4-Nitro-5-Sulfophenyl)-2H-Tetrazolium-5-Carboxanilide (XTT) method, cell apoptosis was observed by Flow cytometry (FCM), the expression of miR-128, B-cell lymphoma 2 (Bcl-2), and Bcl-2-associated X protein (Bax) was measured by RNA preparation and reverse transcription polymerase chain reaction (RT-PCR), and protein expression of JNK, phosphorylated JNK (p-JNK) and LC3B was analyzed by Western Blot analysis.

Results

The over-expression of miR-128 potently promoted cell proliferation and autophagy while suppressed the apoptosis of porcine ASCs. In addition, the down-regulated expression level of p-JNK was detected in miR-128-over-expressed porcine ASCs. However, followed by the block of the JNK signaling pathway using SP600125 inhibitor, the effects of miR-128 on the proliferation, apoptosis and autophagy of porcine ASCs were significantly suppressed.

Conclusion

It is demonstrated that the miR-128-JNK signaling pathway is a potential therapeutic target for the treatment of obesity.

Disclosure statement

There are no potential conflicts of interest to disclose.

Additional information

Funding

This work was supported by the Key Research Projects in Agriculture of Shanxi Province (No.201803D221022-1), the Program for Sanjin Scholar (No.2016-2017), the Fund for Shanxi 1331 Project (2017) and the National Natural Science Foundation of China (No.31872336).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,339.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.