247
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Uric acid can enhance MAPK pathway-mediated proliferation in rat primary vascular smooth muscle cells via controlling of mitochondria and caspase-dependent cell death

ORCID Icon, &
Pages 293-301 | Received 12 Feb 2021, Accepted 12 May 2021, Published online: 30 May 2021
 

Abstract

Hyperuricemia may be a risk factor for cardiovascular diseases such as hypertension and atherosclerosis, but the mechanisms underlying uric acid-induced pathological conditions remain unknown. In this study, we investigated the effect of short time and long-term administration of increasing uric acid concentrations on cell viability, proliferative and apoptotic pathways in vascular smooth muscle cells (VSMCs). Cell viability/proliferation was determined with WST-1 assay. Expression levels of mitogen-activated protein kinases (MAPKs) (phosphorylated (p)-p38 and p-p44/42 MAPK), extrinsic (caspase 3, caspase 8), and intrinsic (B-cell lymphoma-extra-large (Bcl-xL)) apoptotic pathway proteins were measured by Western blotting. In order to assess the proliferative effects of uric acid incubations on VSMCs, we monitored the proliferative/apoptosis signaling pathways for up to 24 h. Our results indicated that uric acid increases cell viability at time and dose-dependently in VSMCs. Immunoblotting results showed that uric acid treatment elevated the expression level of p-p38 MAPK but did markedly reduce the protein levels of p-p44/42, compared with all the uric acid doses-treated VSMCs, especially at 1 h. Uric acid stimulation increased caspase-3 protein levels and decreased Bcl-xL, but did not alter caspase-8 protein expression at the same dose and time. Furthermore, low uric acid incubations (0–7.5 mg/dL) did not affect any signaling pathways for long time points (6–24 h). In conclusion, our study demonstrates for the first time that VSMCs induced with uric acid can affect cell viability, proliferative, and apoptosis pathways at the widest time and dose range. These findings provide a better understanding of the uric acid effects related to vascular impairments.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This study was supported by Akdeniz University Scientific Research Projects Found [grant number TSA-2018-3543].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,339.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.