119
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Anti-COVID-19 and antidiabetic activities of new oleanane and ursane-type triterpenoids from Salvia grossheimii: an in-silico approach

ORCID Icon, ORCID Icon, & ORCID Icon
Pages 540-548 | Received 16 Mar 2022, Accepted 28 Apr 2022, Published online: 11 May 2022
 

Abstract

Salvia grossheimii is a perennial herb with antidiabetic and cytotoxic constituents. In continuation of our study on S. grosshiemii to identify the bioactive phytochemicals, we have reported the characterization of seven undescribed triterpenoids. The aerial parts of the plant were extracted in dichloromethane and its constituents were isolated using chromatography techniques. The structures of compounds were identified using 1D, 2D NMR, and ESI-MS spectral data. Seven new oleanane- and ursane-type triterpenoids (17) were identified in S. grossheimii. The structures of 17 were characterized as; 2α-hydroxy-3β-acetoxy-olean-9(11),12-diene (1), 2α-acetoxy-3β-hydroxy-olean-9(11),12-diene (2), 3β-acetoxy-olean-18-ene,2α,11α-diol (3), 2α-hydroxy-3β-acetoxy-urs-9(11),12-diene (4), 2α-acetoxy-3β-hydroxy-urs-9(11),12-diene (5), 2α,3β-diacetoxy-urs-12-ene-11α,20β-diol (6), 2α,3β-diacetoxy-urs-9(11),12-diene-20β-ol (7). Triterpenoids (2, 5, and 7) were intramolecular transesterification or dehydration products of their corresponding isomers or allylic alcohol in the C rings, respectively, produced in-situ during NMR spectroscopy. Virtual screening of 17 was performed with molecular docking analysis to identify the potential SARS-CoV-2 and α-glucosidase inhibitors using the smina molecular docking algorithm. The best binding energy values (kcal/mol) against COVID-19 main protease Mpro were calculated for 6 (-8.77) and 7 (-8.68), and the higher binding affinities toward human α-glucosidase were obtained for 2 (-9.39) and 6 (-8.63). This study suggests S. grossheimii as a rich source of bioactive triterpenoids and introduces new natural compounds. Considering the high binding energy values of 2, 6, and 7, these structures could be candidates for anti-COVID-19 and antidiabetic drug development in the future.

Graphical Abstract

Acknowledgment

This study was part of the Ph.D. thesis of Somayeh Zare. Authors are grateful to the NMR center of the Uppsala University for providing the spectroscopy facilities.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

The authors gratefully acknowledge the financial support from Shiraz University of Medical Sciences through a grant [grant number: 11016]. ARJ thank Alexander von Humboldt Foundation for donation of the analytical HPLC system [3.4/V-8151/19007].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,339.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.