164
Views
2
CrossRef citations to date
0
Altmetric
Articles

Dimensional reduction of balance parameters in risk of falling evaluation using a minimal number of force-sensitive resistors

ORCID Icon & ORCID Icon
Pages 507-518 | Published online: 11 Sep 2020
 

Abstract

Purpose. As the instrumented insole is available for a wide commercial range in the retail trade, this study aims to reduce its overall cost using fewer sensors by carrying out an effective risk of falling evaluation. Methods. We compared the effect of reducing balance parameters using four and three force-sensing resistors (FSRs) of an instrumented insole. Data were previously collected among elderly participants during a Timed Up and Go (TUG) test. Results. While reducing the number of balance parameters, during sit-to-stand and stand-to-sit activities, the risk scores using four FSRs were not significantly different compared with three FSRs. Parameter reduction did not show any significant loss of information among the study population using four FSRs. For certain configurations of three FSRs, a significant effect of information loss was found in the study participants, revealing the importance of investigating the sensor locations in the process. Conclusions. We conclude that it is feasible to estimate a risk index during a TUG test not only after reducing the number of needed sensing units from four to three FSRs but also after reducing the number of balance parameters. The three FSRs should be located at strategic positions to avoid a significant loss of information.

Acknowledgements

The authors are grateful to the volunteers who gave their time so generously and helped to make this research possible.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This study was funded by Ministère de l'Economie, de la Science et de l'Innovation (MESI), province of Quebec, Canada, as part of Programme de soutien à la valorisation et au transfert (PSVT), Volet 2.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 279.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.