855
Views
59
CrossRef citations to date
0
Altmetric
Articles

Landscape ecological safety assessment and landscape pattern optimization in arid inland river basin: Take Ganzhou District as an example

, &
Pages 782-806 | Received 06 Sep 2018, Accepted 11 Oct 2018, Published online: 27 Dec 2018
 

Abstract

Landscape ecological security assessment aims to make a comprehensive evaluation of regional landscape ecological security through the construction of regional ecological security evaluation indicator system. According to the theory of landscape ecology, spatial principal component analysis (SPCA) and GIS techniques, we obtained the distribution of landscape ecological security pattern of Ganzhou District, Gansu province, China. We obtained the ecological sources, corridors, and nodes according to the minimum cumulative resistance (MCR) model to optimize the structure and function of ecological function network. The following results were found: the comprehensive landscape ecological security situation of the research area was on the average. The spatial distribution pattern of landscape ecological security level indicated that the low level of safety were mainly distributed in the Gobi and desert areas in the north, accounting for 19.9% of the study area, while the high safety level was mainly distributed in the northwest and southeast of the Heihe River basin, accounting for 24.8% of the study area. With points, lines, and surfaces being interlaced, a regional ecological network was constructed, which was consisted of six ecological corridors, 14 ecological nodes, a large ecological source area and a plurality of small source areas, and could effectively improve landscape ecological security level of the study area.

Disclosure statement

The authors declare that they have no conflict of interest.

Additional information

Funding

This study was funded by the National Nature Science Foundation of China [grant number 41661025] and Research ability promotion project for young teachers of Northwest Normal University [grant number NWNU-LKQN-16-7].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 358.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.