155
Views
1
CrossRef citations to date
0
Altmetric
Articles

Pilot scale production of recombinant hemicellulases and their saccharification potential

ORCID Icon, &
Pages 1063-1075 | Published online: 28 Jun 2020
 

Abstract

Synergistic saccharification ability of hemicellulases (endo-xylanase and β-xylosidase) was evaluated in this study for the bioethanol production from plant biomass. Endo-xylanase and β-xylosidase genes from Bacillus licheniformis were cloned and expressed in Escherichia coli BL21 (DE3). Maximum endo-xylanase production was obtained at 200 rpm agitation speed, air supply rate 2.0 vvm, 70% volume of the medium, 20% dissolved oxygen level and with 3% inoculum size. The optimal conditions for maximum production of recombinant β-xylosidase enzyme at pilot scale were 200 rpm agitation speed, 25% dissolved oxygen level, 2.5 vvm aeration rate, 70% volume of the medium with 2% inoculum size. Furthermore, the saccharification potential of these recombinant enzymes was checked for the production of xylose sugar by bioconversion of plant biomass by optimizing individually as well as synergistically by optimizing various parameters. Maximum saccharification (93%) of plant biomass was observed when both enzymes were used at a time with 8% sugarcane bagasse as a substrate and 200 units of each enzyme after incubation of 6 hr at 50 °C and 120 rpm. The results obtained in this study suggested these recombinant hemicellulases as potential candidates for the conversion of complex agricultural residues into simple sugars for ultimate use in the biofuel industry.

Acknowledgements

Authors acknowledge the Higher Education Commission Pakistan for providing funds to complete this research project.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This research was funded by Higher Education Commission of Pakistan for Biofuel projects [No. 5535] and Pak-Turk Researchers Mobility Program.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 604.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.