281
Views
19
CrossRef citations to date
0
Altmetric
Research Articles

Preparation and in vitro/in vivo evaluation of 6-Gingerol TPGS/PEG-PCL polymeric micelles

, , , , , , ORCID Icon & show all
Pages 1-8 | Received 14 Aug 2018, Accepted 04 Dec 2018, Published online: 12 Nov 2019
 

Abstract

6-Gingerol, an active herbal ingredient of ginger has various bioactivities such as anti-neurodegenerative disease, anti-inflammatory and so on. The aim of the present study was to enhance the oral bioavailability and brain distribution of 6-Gingerol via polymeric micelles. A polymeric micelles drug delivery system of 6-Gingerol consisting of D-α-Tocopheryl polyethylene glycol 1000 succinate (TPGS) and Poly (ethylene glycol)-poly (ε-caprolactone) (PEG-PCL) was prepared via solvent injection method. The developed 6-Gingerol-loaded TPGS/PEG-PCL micelles (6-GTPMs) were characterized based on particle size, polydispersity index (PDI), zeta potential, encapsulation efficiency (EE), drug loading (DL) and in vitro release profile. The pharmacokinetics and tissue distribution studies were also evaluated. The nanoformulation produced a particle size of 73.24 ± 2.84 nm with acceptable PDI (0.129 ± 0.03), zeta potential (−2.74 ± 0.92 mV), DL (4.64%) and EE (79.68%). The in vitro release profile showed that the 6-GTPMs enhanced the solubility of 6-Gingerol, while the pharmaceutical analysis in rats indicated that 6-GTPMs significantly improved the oral bioavailability of 6-Gingerol (about 3 folds) in circulation. The 6-GTPMs exhibited remarkable brain targetability in the tissue distribution analysis. Collectively, a 6-Gingerol polymeric micelle with enhanced oral bioavailability coupled with excellent brain distribution was successfully developed.

Graphical Abstract

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by the National Natural Science Foundation of China under Grant [81371171]; the Doctoral Fund of Ministry of Education of China under Grant [20113227110012]; Special Funds for 333 and 331 projects under Grant [BRA2013198].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 523.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.