413
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Tazarotene-loaded in situ gels for potential management of psoriasis: biocompatibility, anti-inflammatory and analgesic effect

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 909-918 | Received 15 Feb 2020, Accepted 02 May 2020, Published online: 13 May 2020
 

Abstract

Psoriasis is a chronic autoinflammatory disorder characterized by patches of abnormal skin. For psoriasis management, the application of topical retinoids as Tazarotene is recommended. However, Tazarotene could induce skin irritation limiting its use. Herein, it is evaluated the possible usage of in situ gels for tazarotene skin delivery. The topical in situ gels were developed using thermosensitive poloxamers via cold method. They were examined for their appearance, sol-gel temperature, clarity, pH, viscosity, in vitro release, and stability. Their biocompatibility was evaluated by investigating their cytotoxicity and irritation inducing capacity. The possible anti-inflammatory and analgesic activities were determined by measuring the nitric oxide and prostaglandin E2 levels production in LPS-stimulated RAW264.7 murine macrophage cells. It was revealed that the in situ gels had no cytotoxic effect (∼95–100% cell viability) and nor irritation potential (∼97% cell viability), according to the in vitro EpiDerm™ reconstituted skin irritation test. Additionally, the 10% tazarotene-in situ gels showed possible analgesic activity since the production of prostaglandin E2 (PGE2) was decreased. In further, both concentrations of 5% and 10% tazarotene-in situ gels inhibited significantly the nitrite oxide production at 16% and 19%, respectively. Finally, the prepared in situ gels can act as a potential non-irritant alternative option for tazarotene topical skin delivery.

Disclosure statement

The authors declare no conflict of interest.

Additional information

Funding

This study was supported by Ege University Scientific Research Projects Coordination Unit [project number 16/ECZ/010].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 523.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.