63
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

The influence of input material properties on hot melt granules prepared using a counter-rotating batch mixer

, &
Pages 1-17 | Received 06 Oct 2021, Accepted 04 Dec 2022, Published online: 30 Dec 2022
 

Abstract

Objective

The objective of this study was to develop a method that enabled granulation in a counter-rotating batch mixer to emulate large scale dry twin screw granulation trials.

Methods

Four granulations were prepared using counter rotating batch mixing for formulations containing a mixture of different particle sizes of the API (70% w/w) and polymer (30% w/w). Milled theophylline (MTHF; fine API) was blended with coarse hydroxypropyl cellulose (HPC MF; coarse polymer), theophylline (THF; coarse API) with fine hydroxypropyl cellulose (HPC EXF, fine polymer), and the other two formulations consisted of both components in the blend being fine or coarse.

Results

The formulations selected for granulation had the lowest friction coefficient, f, as a function of drug load determined by the iShear® powder flow rheometer. Despite the non-uniform chaotic and random nature of thermal granulation, each formulation granulated reproducibly, though the evolution for each was different.

Conclusion

This work highlighted that, firstly it is possible to measure plastic and frictional energy dissipation as product temperature. Secondly, granule growth and density were found to be proportional to the onset of polymer molecular mobility activated by the heat liberated from interparticle velocity differences via mechanical work (torque) required to move agglomerates through the mixer for the duration of each run.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 523.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.