250
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Design of experiments approach on the compaction properties of co-amorphous tablets

, &
Pages 907-914 | Received 09 Aug 2023, Accepted 19 Oct 2023, Published online: 28 Oct 2023
 

Abstract

Co-amorphous systems are an evolving strategy to stabilize the amorphous form of a drug molecule with the aim of overcoming its poor water-solubility. With research focussing on the molecular level of co-amorphous systems, little is known about their downstream processing. In this study, tablets of co-amorphous carvedilol and aspartic acid (CAR-ASP) with calcium hydrogen phosphate and croscarmellose sodium as excipients were produced using a compaction simulator. The amorphous form of spray dried CAR-ASP and the subsequently produced tablets was confirmed with XRPD. Over the storage time of 12 weeks, no recrystallization of the amorphous material was observed. A central composite face-centred design with three factors was set up to investigate the interplay of formulation and processing variables with the tablet characteristics elastic work, tensile strength and disintegration time. As a result, increasing the amount of co-amorphous material led to a decrease in elastic work and an increased tensile strength. These effects were beneficial for tablet properties, namely harder tablets and reduced elasticity. Disintegration time was prolonged by amounts of up to 25–30% co-amorphous material, while larger amounts induced faster tablet disintegration. While showing the feasibility of compacting co-amorphous material with calcium hydrogen phosphate, this study also gives insight into how tablet characteristics are affected by co-amorphous material and relevant process parameters.

Graphical Abstract

Acknowledgements

The authors would like to thank Wiebke Traichel for her contribution to the storage stability study. Furthermore, the authors would like to thank Kilian Stuhler for experimental contribution in the revision phase.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 523.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.