475
Views
17
CrossRef citations to date
0
Altmetric
Articles

Finite element modeling of ultrasonic-assisted turning: cutting force and heat generation

&
Pages 869-885 | Published online: 07 Aug 2019
 

Abstract

Adding ultrasonic vibrations to conventional turning can improve the process in terms of cutting force, surface finish and so on. One of the most important factors in machining is the heat generation during the cutting process. In ultrasonic-assisted turning (UAT) the tool tip also vibrates at very high frequency and this sinusoidal motion causes complexity in heat modeling of the cutting system. Modeling and simulation of cutting processes can help to understand the nature of process and provides information to select optimum conditions and machining parameters. In this article, a finite element model has been developed for predicting tool tip temperature in UAT. The effect of machining parameters including cutting speed, feed rate and amplitude of vibration on the tool tip temperature has been investigated. In order to simplify the machining process, the cutting experiment has been carried out in dry condition. The results showed that by applying ultrasonic vibration to the cutting tool, the tool tip flash temperature increases but in some condition its average value could be less than the conventional machining.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 431.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.