Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 56, 2021 - Issue 2
160
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Differences in nitrification and ammonium-oxidising prokaryotes in the process of wetland restoration

, , , , & ORCID Icon
Pages 136-144 | Received 16 May 2020, Accepted 12 Nov 2020, Published online: 01 Dec 2020
 

Abstract

Ammonia-oxidising archaea (AOA) and ammonia-oxidising bacteria (AOB) are ammonium oxidising prokaryotes that can drive soil nitrification in wetlands. During the restoration of wetlands, different types of land use soils (agricultural soil [AS], restored wetland soil [RS], and natural wetland soil [NWS]) are present. However, studies on the effects of changes in the types of land use in wetlands during restoration on nitrification and the community composition of AOA and AOB are still not well understood. In this study, the differences in the potential nitrification rate (PNR) and community composition of AOA and AOB in AS, RS, and NWS were compared and discussed. The results indicated that the PNRs in the AS, RS, and NWS were on the same order of magnitude. Nitrification was mainly driven by AOB. High-throughput sequencing results showed that the genus Nitrososphaera of AOA and unclassified_o_Nitrosomonadales of AOB were only detected in the AS. Redundancy analysis (RDA) results indicated that the community composition of AOA was mostly influenced by pH, while TC was the most influential variable on the community composition of AOB. Our study provides a basis for distinguishing the roles of ammonium-oxidising prokaryotes in nitrification and further understanding the changes in nitrifying activity in wetlands during restoration.

Additional information

Funding

This study was financially supported by the National Key R&D Program of China (2016YFC0500408) and the Scientific Research Funding Project of Education Department of Liaoning Province (JQL202015402).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 709.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.