Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 56, 2021 - Issue 12
228
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Evaluation of flame retardancy and flexural property on prepared plastic disks containing known concentrations of flame retardants through simulated weathering tests

ORCID Icon, , , , , , & ORCID Icon show all
Pages 1287-1295 | Received 08 Sep 2020, Accepted 13 Sep 2021, Published online: 30 Sep 2021
 

Abstract

The standardized acrylonitrile-butadiene-styrene (ABS) or polycarbonate (PC) resin disk with added flame retardants (FRs) has a potential to be a suitable tool for predictions of both aging of the plastic materials and release rate of a flame retardants exposed under different outdoor and indoor conditions. The experiments examined the dynamics and kinetics of the release of dechlorane plus, tetrabromobisphenol A, triphenyl phosphate and antimony trioxide as FRs from a standardized plastic disk before and after exposure to artificial sunlight. Assessments were carried out independently to measure changes in the content of flame retardants and monitor the flame retardancy and flexural properties after exposure (60 W/m2) over a period of 200 h and 500 h, which are reasonable to predict a short-time tendency and to receive any advice for a safe re-use. The releases of three organic flame retardants and four elements (Cl, Br, P and Sb) from weathered ABS and PC disks were very limited, except for surface delamination and resin microparticles. Triphenyl phosphate was stable without hydrolysis, while the degradation of tetrabromobisphenol A was observed (approximately 20% decrease for ABS disk and approximately 50% decrease for PC disk). During the study, no significant differences in the flame retardancy and flexural properties of the disks could be detected. In practice, the results obtained from disks of acrylonitrile-butadiene-styrene or polycarbonate resin with selected flame retardants used in specific conditions may provide technical expertise regarding weathering processes.

Acknowledgements

We are grateful to Dr. T. Miura, Ms. R. Iwasawa, and Mr. T. Kidokoro for helpful supports in this study. The plastic disks were prepared by DJK Corporation (Kanagawa, Japan) and the P quantification with ICPOES was performed by Toray Research Center (Tokyo, Japan) and Sumika Chemical Analysis Service (Osaka, Japan).

Disclosure statement

No potential conflict of interest was reported by the authors.

Correction Statement

This article has been republished with minor changes. These changes do not impact the academic content of the article.

Additional information

Funding

This work was supported by the Environment Research and Technology Development Fund (3K133009) of the Ministry of the Environment, Japan.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 709.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.