394
Views
12
CrossRef citations to date
0
Altmetric
Articles

Toward an understanding of mechanisms regulating plant response to biochar application

, , , , , , & ORCID Icon show all
Pages 163-172 | Received 13 Sep 2018, Accepted 20 Sep 2018, Published online: 25 Nov 2018
 

Abstract

Plant growth and development are affected by several environmental factors, among which soil nutrient availability. Biochar addition to soil is recognized to exert beneficial effects on soil fertility and thus plant growth; furthermore, it is a promising option for climate change mitigation. However, multi-species studies and meta-analyses have indicated considerable variations in biochar responses among plant species. To date, information on the biochar effect on plants, especially at molecular level, is still scarce. Using a multi-target approach with a model plant such as tomato, we demonstrate that biochar has a negligible effect on soil nutrient content and plant growth, even if it misbalances the plant photosynthetic machinery, as well as mechanisms recognizing pathogen-derived molecules. Ethylene could be one of the signal-molecule driving the alteration of tomato-pathogen recognition signaling by inactivation of vesicle trafficking. All these modifications could be at the basis of the increased susceptibility of biochar-treated plants to pathogen attack. Further organ-specific and tissue-specific multi-level studies, from high-resolution internal processes towards high-throughput external phenotyping, coupled with powerful biostatistic and informatic analysis, will help to decipher, in a network-type fashion, all the factors and signaling mechanisms related to the complex interaction between different plant, soil and biochar types.

Acknowledgments

The authors thank Carla Amendola and Roxana Ginerete (University of Molise) for their technical support during laboratory measurements.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

Research was supported by grants from Molise Region (PSR Molise 2007/2013-Misura 124) through the ProSEEAA Project (CUP: D95F14000030007).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 234.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.