599
Views
11
CrossRef citations to date
0
Altmetric
Special feature: Long-term monitoring and research in Asian university forests: towards further understanding of environmental changes and ecosystem responses

Influence of seasonality and climate on captures of wood-boring Coleoptera (Bostrichidae and Curculionidae (Scolytinae and Platypodinae)) using ethanol-baited traps in a seasonal tropical forest of northern Thailand

, , , , &
Pages 223-231 | Received 01 Nov 2019, Accepted 21 Jun 2020, Published online: 02 Jul 2020
 

ABSTRACT

Insects in the tropics usually have continuous generations throughout the year. We reanalyzed published data of wood-boring beetles, belonging to three taxonomic groups (Bostrichidae; Curculionidae: Scolytinae, Platypodinae), that were captured by ethanol-baited traps continuously set for three years and collected every two weeks in the lowland montane forest in northern Thailand. Because trap captures seemed to have 1-yr cycle, we hypothesized that 1-yr cycle of climate had caused 1-yr cycle in the trap captures. To test this hypothesis, cycles of both total trap captures (TTC) and of each species, synchrony in time-series trap captures, and causality of temperature and rainfall to the TTC were determined. Eighty-nine species were captured over the three years. Among 55 species (>2 individuals), 30 species showed the greatest peak of spectral density at 1-yr, but only three were significant. Some species had (a) cycle(s) shorter than one year. However, 20 species making up 69.7% of TTC and 38 species making up 91.1% of TTC showed significant synchrony with TTC diagnosed by the Phillips-Ouliaris cointegration test and Pearson’s correlation function, respectively. Temperature, rainfall, and season (solar elevation angle) showed significant causalities, the effect of season being the strongest. Both temperature and rainfall positively influenced TTC with lags. These results indicate that seasonality in temperature and rainfall caused a 1-yr cycle in flying beetles of a majority of the more abundant species, and synchrony among species, which resulted in the 1-yr cycle of TTC. The revolution and tilt of the earth was a likely driving force.

Acknowledgments

We express our sincere thanks to the two anonymous reviewers and four editors for their valuable comments to the earlier versions of this manuscript. Former students at Kasetsart University helped sorting insects. Biing-Tzuang Guan provided useful information on spectral density analysis. We also thank them.

Disclosure statement

No potential conflict of interest was reported by the authors.

Correction Statement

This article has been republished with minor changes. These changes do not impact the academic content of the article.

Additional information

Funding

This work was supported by the Japan Society for the Promotion of Science [16H02760]; Japan Society for the Promotion of Science [Core-to-core Project (FY2019―FY2021)]; Japan Society for the Promotion of Science [Core-to-core Project (FY2016―FY2018)]; Japan Society for the Promotion of Science [23255011].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 159.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.