361
Views
1
CrossRef citations to date
0
Altmetric
Articles

Neuroimaging genetic associations between SEMA6D, brain structure, and reading skills

, , , , , & show all
Pages 276-289 | Received 28 Dec 2020, Accepted 30 Mar 2021, Published online: 07 May 2021
 

ABSTRACT

Specific reading disability (SRD) is defined by genetic and neural risk factors that are not fully understood. The current study used imaging genetics methodology to investigate relationships between SEMA6D, brain structure, and reading. SEMA6D, located on SRD risk locus DYX1, is involved in axon guidance, synapse formation, and dendrite development. SEMA6D’s associations with brain structure in reading-related regions of interest (ROIs) were investigated in a sample of children with a range of reading performance, from sites in Connecticut, CT (n = 67, 6–13 years, mean age = 9.07) and San Francisco, SF (n = 28, 5–8 years, mean age = 6.5). Multiple regression analyses revealed significant associations between SEMA6D’s rs16959669 and cortical thickness in the fusiform gyrus and rs4270119 and gyrification in the supramarginal gyrus in the CT sample, but this was not replicated in the SF sample. Significant clusters were not associated with reading. For white matter volume, combined analyses across both samples revealed associations between reading and the left transverse temporal gyrus, left pars triangularis, left cerebellum, and right cerebellum. White matter volume in the left transverse temporal gyrus was nominally related to rs1817178, rs12050859, and rs1898110 in SEMA6D, and rs1817178 was significantly related to reading. Haplotype analyses revealed significant associations between the whole gene and brain phenotypes. Results suggest SEMA6D likely has an impact on multiple reading-related neural structures, but only white matter volume in the transverse temporal gyrus was significantly related to reading in the current sample. As the sample was young, the transverse temporal gyrus, involved in auditory perception, may be more strongly involved in reading because phonological processing is still being learned. The relationship between SEMA6D and reading may change as different brain regions are involved during reading development. Future research should examine mediating effects, use additional brain measures, and use an older sample to better understand effects.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

The preparation of this article was supported by P20 HD091005 (PI: Grigorenko) and P50 HD052120 (PI: Wagner). Grantees undertaking such projects are encouraged to freely express their professional judgment. Therefore, this article does not necessarily reflect the position or policies of the abovementioned agencies, and no official endorsement should be inferred.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 53.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 627.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.