651
Views
6
CrossRef citations to date
0
Altmetric
Research Article

A model for calculating the mechanical demands of overground running

ORCID Icon, , ORCID Icon & ORCID Icon
Pages 1256-1277 | Received 21 Jan 2020, Accepted 04 Jul 2020, Published online: 21 Sep 2020
 

ABSTRACT

An energy-based approach to quantifying the mechanical demands of overground, constant velocity and/or intermittent running patterns is presented. Total mechanical work done (Wtotal) is determined from the sum of the four sub components: work done to accelerate the centre of mass horizontally (Whor), vertically (Wvert), to overcome air resistance (Wair) and to swing the limbs (Wlimbs). These components are determined from established relationships between running velocity and running kinematics; and the application of work-energy theorem. The model was applied to constant velocity running (2–9 m/s), a hard acceleration event and a hard deceleration event. The estimated Wtotal and each sub component were presented as mechanical demand (work per unit distance) and power (work per unit time), for each running pattern. The analyses demonstrate the model is able to produce estimates that: 1) are principally determined by the absolute running velocity and/or acceleration; and 2) can be attributed to different mechanical demands given the nature of the running bout. Notably, the proposed model is responsive to varied running patterns, producing data that are consistent with established human locomotion theory; demonstrating sound construct validity. Notwithstanding several assumptions, the model may be applied to quantify overground running demands on flat surfaces.

Acknowledgments

The authors thank Lachlan Penfold and the Brisbane Lions AFC for supporting data collection and P.E. di Prampero and his colleagues for discussion during the development of the presented model.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 212.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.