454
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The use of inertial measurement units to quantify forearm loading and symmetry during gymnastics vault training sessions

ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon
Pages 204-221 | Received 29 Jan 2022, Accepted 22 Aug 2022, Published online: 06 Sep 2022
 

ABSTRACT

The upper limbs are important in gymnastics vaulting, as the success of the flight phase is dependent on a quick and forceful push-off from the vault. This places the upper limbs under stress, which has been associated with pain and injury. This study aimed to quantify forearm segmental loading and symmetry when performing foundation to advanced-level vaulting skills during training. Twelve advanced-level artistic gymnasts (female, n = 6; male, n = 6) wore bilaterally forearm-mounted inertial measurement units while completing their vaulting sessions. The peak resultant acceleration for the leading and non-leading forearms during contact were calculated. Female gymnasts performed variations of Yurchenko vaults, while male gymnasts performed Handspring and Tsukahara vaults. Descriptive statistics (median and inter-quartile range), symmetry index scores, and total session impact load (measure of cumulative loading) were calculated between the lead and non-lead forearms. High asymmetrical loading was identified for some Yurchenko, Handspring, and Tsukahara vaults, with large variations identified between gymnasts. Some gymnasts experienced greater loading at their lead forearm, while others experienced greater loading at their non-lead forearm. Results indicate that limb loading patterns in advanced gymnastics are highly individualised, indicating that individual analysis is needed to identify gymnasts (or limbs) at an increased risk for overuse injury.

Acknowledgment

The authors would like to thank the gymnasts who participated in this research.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This research is supported by an Australian Government Research Training Program (RTP) Scholarship.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 212.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.