314
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Extravillous trophoblast invasion accelerated by WNT3A, 5A, and 10B via CD44

ORCID Icon, , , , ORCID Icon, ORCID Icon & show all
Pages 3377-3385 | Received 03 Oct 2018, Accepted 22 Oct 2019, Published online: 17 Nov 2019
 

Abstract

Introduction

Appropriate extravillous trophoblast (EVT) invasion is essential for successful pregnancy. Previously, we showed that EVTs express CD44, which accelerated EVT invasion. However, its regulation mechanism via CD44 remains unknown. Our hypothesis was that WNT signaling enhanced EVT invasion via CD44. To test this hypothesis, we investigated the effects of WNT ligands on CD44 expression and EVT invasion using EVT cell lines and isolated primary EVTs.

Methods

We used EVT cell lines (HTR8/SVneo and HChEpC1b) and isolated primary EVTs, extracted from first-trimester trophoblasts. The cells were supplemented with WNT3A, 5A, and 10B. We examined cell invasion and the expressions of CD44 and matrix metalloproteinase (MMP) 9. Next, to clarify the pathway of WNT10B in EVTs, we knock-downed WNT10B using siRNA and activated or inhibited the WNT canonical pathway using an activator (lithium chloride) or inhibitor (FH535, XAV939) with WNT10B addition.

Results

WNT3A, 5A, and 10B accelerated the invasion in the EVT lines and isolated primary EVTs. The expressions of CD44 and MMP9 were also upregulated by WNT ligands. WNT10B knockdown significantly inhibited EVT invasion concomitantly with CD44 expression. The WNT canonical pathway activator upregulated CD44 expression and its inhibitor downregulated it with WNT10B addition.

Conclusions

The present study is the first to show the possibility that WNT3A, WNT5A, and WNT10B exist upstream of CD44 in EVTs. Among them, WNT10B may be a novel accelerator of EVT invasion. WNT signaling mediated by multiple WNT ligands may contribute to EVT invasion.

Ethical approval

Informed consent is obtained.

Acknowledgments

We thank Takuji Kosuge (Nippon Medical School, Bunkyo-ku, Tokyo, Japan) for providing technical assistance.

Disclosure statement

No potential conflict of interest was reported by the authors.

Correction Statement

This article has been republished with minor changes. These changes do not impact the academic content of the article.

Additional information

Funding

This work was supported by Grants-In-Aid for Scientific Research [grant No. 16K11103 to HT; No. 17K11256 to TT; No. 19K18650 to HT] from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), and Takeda Science Foundation, Japan.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access
  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart
* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.