48
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Changes over time in ferroelectricity of nanocomposites containing cellulose combined with [NH4][Zn(HCOO)3]

ORCID Icon
Pages 1999-2012 | Received 16 Jan 2023, Accepted 10 Aug 2023, Published online: 24 Aug 2023
 

ABSTRACT

For the first time, a composite based on a ferroelectric metal-organic framework of [NH4][Zn(HCOO)3] combined with nanocellulose at different cellulose concentrations from 0 to 75 wt% was synthesised to investigate the changes over time in phase transition and ferroelectric switching. A comparative study for fresh samples and the samples after 288 h was conducted. Electrophysical parameters were measured in a temperature range of 140 to 245 K under a weak electric field with an amplitude of 2 V.cm−1 at a frequency of 1 kHz. The results indicated that the increase in cellulose content led to increasing the phase transition temperature from 190.1 to 238.5 K. Besides, the coercive field was also found to increase from 3.78 to 14.12 kV.cm−1 along with the reduction of dielectric permittivity and maximum polarisation. After 288 h, this phase transition decreased significantly over time even to 231.6 K in the case of highest cellulose content (75 wt%). Meanwhile, the coercive field was found to decrease from 14.12 to 10.57 kV.cm−1. Remarkable changes were detected for samples with cellulose content of higher 25 wt%. The weaker interaction between ferroelectric part and cellulose over time due to the softness of cellulose was responsible for the obtained phenomena.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.