428
Views
25
CrossRef citations to date
0
Altmetric
Articles

Removal of antibiotics and nutrients by Vetiver grass (Chrysopogon zizanioides) from secondary wastewater effluent

, &
Pages 764-773 | Published online: 15 Jan 2020
 

Abstract

Persistence of antibiotics in soil and aquatic ecosystem is the primary reason for the emergence of antimicrobial resistant microorganisms. After consumption, antibiotics are poorly retained in our body, and a major fraction is excreted out. These bioactive compounds end up in wastewater. The routine treatment practiced by the conventional wastewater treatment plants does not remove the entire load of antibiotics. Cost-effective and environment-friendly treatment technologies need to be developed to address this issue. Vetiver system is being adapted throughout the world due to its removal capacity and high tolerance toward several toxic organic and inorganic pollutants. In this study, we investigated the potential of vetiver (Chrysopogon zizanioides), a fast-growing, perennial grass capable of growing in a hydroponic setup, to remove two widely prescribed antibiotics, ciprofloxacin (CIP) and tetracycline (TTC) from secondary wastewater effluent. Significant (p < 0.05) removal of antibiotics and nutrients (N & P) by vetiver grass from secondary wastewater effluent was observed within 30 days. Vetiver grass removed more than 90% antibiotics from secondary wastewater matrix. In addition to antibiotics, vetiver grass also removed nitrate (>40%), phosphate (>60%), total organic carbon (>50%), and chemical oxygen demand (>40%) from secondary wastewater effluent.

Acknowledgment

We are grateful to Mr. Roger Marques from Joint Meeting of Essex and Union Counties wastewater treatment plant for providing access to collect wastewater effluent.

Disclosure statement

The authors have no conflict of interest.

Additional information

Funding

The authors would like to acknowledge funding from the National Oceanic and Atmospheric Administration (NOAA), [grant #NA14OAR4170085] via New Jersey Sea Grant. We thank student research grant funding from U.S. Geological Survey via New Jersey Water Resources Research Institute (NJWRRI).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 382.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.