384
Views
20
CrossRef citations to date
0
Altmetric
Articles

Removal of methylene blue dye from aqueous solutions by adsorption on levulinic acid-modified natural shells

ORCID Icon
Pages 885-895 | Published online: 10 Mar 2020
 

Abstract

This study has developed an innovative and environmentally friendly approach for the removal of methylene blue (MB) dye by natural shells (NShs) chemically modified with levulinic acid (LA). Almond shell (ASh), walnut shell (WSh), and apricot kernel shell (AKSh) were used as waste fillers. The adsorption behavior of MB onto the biosorbents was investigated with respect to parameters such as sorbent dosage (0.4–6 g/L), pH (3–10), initial dye concentration (10–500 mg/L), and temperature (25–65 °C). The biosorbents were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) analysis. The isotherm and kinetic adsorption data can be said to fit the Freundlich isotherm model and the pseudosecond-order model, respectively. The maximum adsorption capacity (qmax) of LA-modified walnut shell (LA-WSh), almond shell (LA-ASh), and apricot kernel shell (LA-AKSh) calculated by the Langmuir equation at 25 °C was 294.1, 270.2, and 180.0 mg/g, respectively. The results of thermodynamic analysis showed that adsorption was feasible, endothermic, and spontaneous.

Graphical Abstract

Additional information

Funding

The author would like to thank the Selcuk University Scientific Research Foundation, which financed project [18401085].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 382.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.