284
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Phytoremediation potentials of Eichhornia crassipes for nutrients and organic pollutants from textile wastewater

, , , , &
Pages 1333-1341 | Published online: 31 Mar 2021
 

Abstract

We used live water hyacinth (WH, Eichornnia crassipes) to purify effluents from textile factories and monitored changes in the physicochemical properties, organic pollutants, and WH biomass. Although the water plant could not thrive in the highly polluted effluents after eight weeks, it achieved 55, 91, 53, 84, 96, 53, and 55% removal efficiency for total Kjeldahl-N (tK-N), NH3–N, organic-N, PO43–, SO42–, Cl, and hardness, respectively. Likewise, the biomass growth showed a positive and strong correlation with NH3-N (0.998), tK-N (0.956), organic-N (0.923), pH (0.853), and EC (0.712). In contrast, chemical oxygen demand and total oil and grease (TOG) evinced negative and strong correlations of −0.994 and −0.807, respectively. Further, Cl correlated mildly (–0.38), while alkalinity (0.154) and water hardness (–0.296) were less influential on the biomass growth. From the removal models, an average of 312 ± 7.7 g of WH would ensure 100% remediation of the nutrients in 29.2 ± 2.5 days. Except for organic-N, the removal kinetics generally favors pseudo-first-order, suggesting the sorbates' concentration and contact time as the limiting factors. Conclusively, WH is a phytoremediator of high potentials for industrial textile effluents, provided the effluents are conditioned at optimum concentration before contact with mature WH of sufficient biomass weight.

Novelty statement Eichhornia crassipes was used for simultaneous removal of nutrients and organics from textile effluents. The influence of the macrophte's biomass weight and maturity on the remediation process were examined. Also, the limiting parameters that govern the remediation process were investigated via statistical correlation and kinetic study.

Acknowledgments

The authors appreciate the assistance of Mr. Segun Anifowose and Mr. Sunday Ojogbon of the Chemical Oceanography Lab, Department of Marine Science and Technology, The Federal University of Technology, Akure, Nigeria.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 382.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.