242
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Cadmium-induced phytotoxicity and tolerance response in the low-Cd accumulator of Chinese cabbage (Brassica pekinensis L.) seedlings

, , , , , & ORCID Icon show all
Pages 1365-1375 | Published online: 31 Mar 2021
 

Abstract

In vegetable production, Chinese cabbage can readily accumulate cadmium (Cd) into its edible parts and exceed food safety standards. However, there are still some ecotypes that respond differently to cadmium stress. This study aimed to investigate the differences of Cd-induced (0, 10, 50, 100, 200 µM) response under hydroponic culture between two Chinese cabbage ecotypes which were promoted in northeastern China from the characteristics of biomass, uptake kinetic, accumulation, and initial oxidative stress. In this paper, it was confirmed that Jinfeng (JF) was a Cd-tolerant cultivar and had low Cd accumulation in edible part, while Qiutian (QT) was Cd-sensitive, exhibiting a faster Cd uptake rate but lacking effective Cd detoxication mechanisms, and was severely damaged by 10 µM Cd treatment. Conversely, even at a high Cd concentration of 200 µM, Jinfeng had weaker biomass inhibition, lower root Cd affinity, more difficult root-to-leaf translocation, and stronger antioxidant enzyme activity than Qiutian. In conclusion, Jinfeng can endure mild Cd stress (<10 µM), and Qiutian can be used as a Cd indicator. This study provides reliable materials and related data support for vegetable production in areas with mild Cd pollution.

Novelty statement: This work further investigates the unique features of low-Cd accumulator in Chinese cabbage (Brassica pekinensis L.) seedlings as an interesting material for vegetable production in areas with mild Cd pollution. It also explains the differences between Cd-tolerant and Cd-sensitive cultivars under different cadmium stress levels and how these differences can alter their response. With the increase of Cd concentration, Cd-tolerant cultivars compared to Cd-sensitive cultivars showed less biomass decrease, lower accumulation, lower TF, more chemically stable Cd in roots and more active antioxidant enzymes under the same Cd stress level. With the development of seedlings, the uptake of Cd in roots and the translocation to the leaves were effectively restricted by the poor Cd affinity of roots, the conversion of Cd chemical forms and the promotion of antioxidase activities, in a Cd-tolerant low accumulator, Jinfeng.

Additional information

Funding

Financial support for this work was provided by the National Key Research and Development Program of China [2017YFD0801104-4] and Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs of the People’s Republic of China.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 382.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.