76
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Interaction studies of water-soluble Zn(II) complex with calf thymus DNA using biophysical and molecular docking methods"

ORCID Icon, , &
Pages 493-516 | Received 27 Apr 2021, Accepted 01 Nov 2023, Published online: 14 Nov 2023
 

Abstract

The binding between a fluorescent water-soluble Zn(II) complex of {2-[N-(2-hydroxyethylammonioethyl) imino methyl] phenol} and calf thymus DNA (ct-DNA) was investigated using spectroscopic techniques. The complex was prepared and identified by FT-IR, and 1H NMR spectroscopies. The significant changes in the absorption and the circular dichroism spectra of ct-DNA in the presence of the Zn(II) complex implied the interaction between the Zn(II) complex and ct-DNA. Upon addition of ct-DNA, the fluorescence emission intensity of the Zn(II) complex was increased and indicated the interaction between the Zn(II) complex and ct-DNA was occurred. The binding constant values (Kb) resulted from fluorescence spectra clearly showed the Zn(II) complex affinity to ct-DNA. The fluorescence studies also approved the static enhancement mechanism in the Zn(II) complex-DNA complexation process. The thermodynamic profile exhibited the exothermic and spontaneous formation of ct-DNA-Zn(II) complex system via hydrogen bonds and van der Waals forces. The competitive fluorescence investigation by methylene blue (MB), and Hoechst 33258 demonstrated that the Zn(II) complex could replace the DNA-bound Hoechst and bind to the minor groove binding site in ct-DNA. The viscosity changes were negligible, representing the Zn(II) complex binding to DNA via the groove binding mode. Molecular docking simulation affirmed that the Zn(II) complex is located in the minor groove of ct-DNA near the DG12, DA17, DA18, and DG16 nucleobases.

Disclosure statement

No potential conflict of interest was reported by the authors.

Data availability statement

All data are available in the manuscript.

Additional information

Funding

This study was supported financially by the Iran National Science Foundation (INSF) and Razi University Research Center.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 606.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.