597
Views
22
CrossRef citations to date
0
Altmetric
Articles

Identification and characterization of a novel indigenous algicidal bacterium Chryseobacterium species against Microcystis aeruginosa

, , , , , , , , , , & ORCID Icon show all
Pages 845-853 | Published online: 28 Aug 2019
 

ABSTRACT

Harmful Microcystis aeruginosa blooms occurred frequently in many eutrophic lakes and rivers with resultant serious global environmental consequences. Algicidal bacteria may play an important role in inhibiting the growth of Microcystis aeruginosa and are considered as an effective method for preventing the appearance of blooms. In order to counteract the harmful effects of Microcystis aeruginosa, a critical step is to identify, isolate and characterize indigenous algicidal bacteria. This study aimed to isolate a novel indigenous algicidal bacterium identified as Chryseobacterium species based upon its 16S rDNA sequence analysis, and determine whether this bacterium was effective in lysing Microcystis aeruginosa FACHB 905. The influence of environmental factors including temperature, pH, quantity of Chryseobacterium species as well as Microcystis aeruginosa concentration were examined with respect to algae-lysing properties of this bacterial strain. Data demonstrated that the highest algae-lysing activity of 80% against Microcystis aeruginosa FACHB 905 occurred within 72 hr. In addition, the algae-lysing activities of Chryseobacterium species cells were significantly higher than those of cell-free supernatant. In conclusion, data showed the algicidal bacterium Chryseobacterium species exhibited potent Microcystis aeruginosa-lysing activities and attacked Microcystis aeruginosa directly suggesting this algicidal bacterium may be potentially useful for reducing the number of harmful Microcystis aeruginosa blooms.

Additional information

Funding

This work was supported by the National Natural Science Foundation [81773393, 81502787]; Central South University Innovation Driven Project [20170027010004]; National Public Welfare Industrial Foundation [201503108]; Open Funding [2014EME001]; Key Research and Development Projects in Hunan Province [2018WK2013]; and Program for College students Free Exploration [201810533360, 201810533358, S201910533279, 20190027020022].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 482.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.