105
Views
3
CrossRef citations to date
0
Altmetric
Articles

Chromosome aberration in typical biological systems under exposure to low- and high-intensity magnetic fields

, &
Pages 97-108 | Received 10 Dec 2019, Accepted 17 Jan 2020, Published online: 05 Mar 2020
 

ABSTRACT

The aim of this study was to investigate the response of chromosomes in typical human and plant cells under applied low-frequency magnetic fields at low and high intensities. Neuronal-like cells and roots of Allium sativum and Vicia faba were used to investigate chromosome's response to a static and 50 Hz magnetic fields at intensities ranging from 1 mT to 0.8 T, generated by two Helmholtz coils driven by direct current or alternate current voltage. Vertex spectrometer and Olympus microscope with camera were used. A significant decrease in intensity of the phosphate bands in the DNA infrared region was observed by FTIR spectroscopy analysis after exposure of neuronal-like cells to static and 50 Hz magnetic field at low intensity of 1 mT, which can be explained assuming that uncoiling and unpackaging of chromatin constituents occurred after exposure. This effect was directly observed by microscope in roots of Allium sativum and Vicia faba under exposure to a static magnetic field at high intensity of 0.8 T. These findings can be explained assuming that exposure to both low- and high-intensity magnetic fields of chromosomes in typical human and plant cells induces uncoiling and unpackaging of chromatin constituents, followed by chromosome alignment towards the direction of applied magnetic field, providing further demonstration that magnetic fields can induce the orientation of organic macromolecules even at low-intensity values.

Acknowledgments

We are grateful to Prof. Riccardo Ientile (Department of Biomedical Sciences and Morpho-functional images, University of Messina, Italy) for his kind and precious collaboration regarding the preparation of SHSY5Y neuronal-like cell samples.

Disclosure statement

The authors report no conflict of interest. The authors alone are responsible for the content and writing of the paper.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,832.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.