195
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Impact of electrical stimulation on the growth of mycelium of lignosus rhinocerus (cooke) ryvarden

, , &
Pages 356-363 | Received 26 Mar 2020, Accepted 10 Aug 2020, Published online: 02 Sep 2020
 

ABSTRACT

Corona discharge from multiple needles at an electrical potential of 5 kV generated by a Van de Graff generator increased the growth rate of the mycelium of tiger’s milk mushroom by 10.3% at the end of the first eight days. A similar growth rate enhancement was observed for the next eight days as well. Mycelium of tiger’s milk mushroom was cultured on agar media in Petri dish for five days prior to the exposure to various forms of electrical stimulations. The direct current injection (1.1–1.3 A) to the growing medium, application of an electric potential to the growing environment at low strength (30 V) and high strength (5 kV) with single and multiple needles showed varying degrees of success. This suggests that the mycelium of tiger’s milk mushroom could positively be stimulated by specific electrical stimulation techniques with selected parameters. This will pave the way to a highly beneficial growth enhancement technique that can be up-scaled to apply in mass production of mushroom.

Acknowledgments

The IPS grant GP-IPS/2016/9506500 of the Universiti Putra Malaysia, and the financial support of EPPEI-HVAC at the University of the Witwatersrand are greatly acknowledged.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,832.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.