214
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Inhibition of B16F10 Cancer Cell Growth by Exposure to the Square Wave with 7.83+/-0.3Hz Involves L- and T-Type Calcium Channels

, , , & ORCID Icon
Pages 150-157 | Received 12 Aug 2020, Accepted 12 Oct 2020, Published online: 28 Oct 2020
 

ABSTRACT

Extremely low-frequency electromagnetic field (ELF-EMF) exposure influences many biological systems; these effects are mainly related to the intensity, duration, frequency, and pattern of the ELF-EMF. In this study, exposure to square wave with 7.83±0.3 Hz (sweep step 0.1 Hz) was shown to inhibit the growth of B16F10 melanoma tumor cells. In addition, the distribution of the magnetic field was calculated by Biot-Savart Law and plotted using MATLAB. In vitro studies demonstrated a decrease in B16F10 cell proliferation and an increase of Ca2+ influx after 48 h of exposure to the square wave. Ca2+ influx was also partially blocked by inhibition of voltage-gated L- and T-type Ca2+ channels. The data confirmed that the specific time-varying ELF-EMF had an anti-proliferation effect on B16F10 cells and that the inhibition is related to Ca2+ and voltage-gated L- and T-type Ca2+ channels.

Acknowledgments

The B16F10 cancer cells and cell culture equipment were provided by the laboratory of H.V. Wang at National Cheng Kung University. The high-throughput screening microscope and technical support were provided by the National Cheng Kung University Medical College Core Research Laboratory.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,832.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.