123
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A highly miniaturized antenna with wider band for biomedical applications

ORCID Icon & ORCID Icon
Pages 35-43 | Received 29 Apr 2021, Accepted 02 Oct 2021, Published online: 04 Nov 2021
 

ABSTRACT

A highly miniaturized planar monopole antenna is presented for biomedical applications. The proposed antenna utilizes polydimethylsiloxane (PDMS) with dielectric constant 2.7 and loss tangent 0.0314 with thickness 0.3 mm as substrate and with thickness 0.2 mm as superstrate. A copper foil of 0.03 mm thickness is used for radiating elements. The proposed structure contains a unique structure, made of loop-based structure with three rectangular-shaped stubs are added to tune the operating frequency to 5.8 GHz and to improve the reflection coefficient. The incorporation of stubs achieved the intended frequency of operation, utilization of the loop-based structure for designing the antenna achieved high miniaturization. The proposed antenna is analyzed under various conditions like under skin, muscle, stomach, small intestine,, colon etc., and comparative analysis is presented with the help of reflection coefficient, radiation patterns and specific absorption rate (SAR). SAR is evaluated over a volume of 1 g tissue as per the standards of Federal Communications Commission (FCC). SAR value of the antenna is below 1.6 W/kg for input power 1.9 mW. The simulated analysis showed that the designed antenna is suitable for both implantable and endoscopic applications. Moreover the simulated and measured analysis for reflection coefficient of the proposed antenna showed good agreement.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,832.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.