56
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Evolutionary gravitational neocognitron neural network optimized with marine predators optimization algorithm for MRI brain tumor classification

, , &
Pages 1-18 | Received 23 Sep 2022, Accepted 13 Dec 2023, Published online: 13 Jan 2024
 

ABSTRACT

Magnetic resonance imaging (MRI) is a powerful tool for tumor diagnosis in human brain. Here, the MRI images are considered to detect the brain tumor and classify the regions as meningioma, glioma, pituitary and normal types. Numerous existing methods regarding brain tumor detection were suggested previously, but none of the methods accurately categorizes the brain tumor and consumes more computation period. To address these problems, an Evolutionary Gravitational Neocognitron Neural Network optimized with Marine Predators Algorithm is proposed in this article for MRI Brain Tumor Classification (EGNNN-VGG16-MPA-MRI-BTC). Initially, the brain MRI pictures are collected under Brats MRI image dataset. By using Savitzky-Golay Denoising approach, these images are pre-processed. The features are extracted utilizing visual geometry group network (VGG16). By utilizing VGG16, the features, like Grey level features, Haralick Texture features are extracted. These extracted features are given to EGNNN classifier, which categorizes the brain tumor as glioma, meningioma, pituitary gland and normal. Batch Normalization (BN) layer of EGNNN is eliminated and included with VGG16 layer. Marine Predators Optimization Algorithm (MPA) optimizes the weight parameters of EGNNN. The simulation is activated in MATLAB. Finally, the EGNNN-VGG16-MPA-MRI-BTC method attains 38.98%, 46.74%, 23.27% higher accuracy, 24.24%, 37.82%, 13.92% higher precision, 26.94%, 47.04%, 38.94% higher sensitivity compared with the existing AlexNet-SVM-MRI-BTC, RESNET-SGD-MRI-BTC and MobileNet-V2-MRI-BTC models respectively.

Plain Language Summary

Evolutionary Gravitational Neocognitron Neural Network optimized with Marine Predators Algorithm is proposed in this article for MRI Brain Tumor Classification (EGNNN-VGG16-MPA-MRI-BTC). Initially, the brain MRI pictures are collected under Brats MRI image dataset. By using Savitzky-Golay Denoising approach, these images are pre-processed. The features are extracted utilizing visual geometry group network (VGG16). By utilizing VGG16, the features, like Grey level features, Haralick Texture features are extracted. These extracted features are given to EGNNN classifier, which categorizes the brain tumor as glioma, meningioma, pituitary gland and normal. Batch Normalization (BN) layer of EGNNN is eliminated and included with VGG16 layer. Marine Predators Optimization Algorithm (MPA) optimizes the weight parameters of EGNNN.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,832.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.