311
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Vibration analysis of variable stiffness laminated composite sandwich plates

Pages 1687-1700 | Received 26 Jun 2018, Accepted 13 Sep 2018, Published online: 25 Jan 2019
 

Abstract

This paper presents the free vibration analysis of a variable stiffness laminated composite sandwich plates. The fiber orientation angle of the face sheets (Skin) is assumed to vary linearly with the x-axis. The problem formulation is based on the higher-order shear deformation plate theory HDST C0 coupled with p-version of finite element method. The elements of the stiffness and mass matrices are calculated analytically. The sandwich plate is presented with a uniform mesh of four p-elements and the convergence properties are achieved by increasing the degree p of the hierarchical shape functions. A calculation program is developed to determine the fundamental frequencies for different physical and mechanical parameters such as plate thickness, core to face sheets thickness ratio, orientation angle of curvilinear fibers and boundary conditions. The results obtained show a good agreement with the available solutions in the literature. New comparison study of vibration response of laminated sandwich plate between the straight and curvilinear fibers is presented.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 423.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.