309
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

A weak-form spectral Chebyshev technique for nonlinear vibrations of rotating functionally graded beams

ORCID Icon, , ORCID Icon & ORCID Icon
Pages 3651-3665 | Received 11 Nov 2022, Accepted 13 Feb 2023, Published online: 05 Mar 2023
 

Abstract

This study presents the spectral Chebyshev technique (SCT) for nonlinear vibrations of rotating beams based on a weak formulation. In addition to providing a fast-converging and precise solution for linear vibrations of structures with complex geometry, material, and physics, this method is further advanced to be able to analyze the nonlinear vibration behavior of continuous systems. Rotational motion and material gradation further complicate this nonlinear behavior. Accordingly, the beam is considered to be axially functionally graded (FG) and a model representing the forced nonlinear vibrations of the beam about steady-state equilibrium deformations (SSEDs) is developed. The model includes Coriolis, centrifugal softening, and nonlinear stiffening effects caused by coupling of the axial, chordwise, and flapwise motions, and large amplitude deformations. The integral boundary value problem for the rotating structure is discretized using the SCT and element-wise multiplication definition. As a result, mass, damping, and stiffness matrices, as well as internal nonlinear forcing functions and external forcing vectors, are obtained for a given rotating beam. This formulation provides a general representation of nonlinear strain relations in matrix form and circumvents the complexity rising from obtaining and solving the partial differential equations directly. In addition, nonlinear forcing functions are obtained in matrix form which facilitates the application of harmonic balance method easier to obtain the forced nonlinear response.

Data availability statement

The datasets generated and/or analyzed during the current study are available from the corresponding author on a reasonable request.

Conflict of interest

The authors declare that they have no conflict of interest concerning the publication of this manuscript.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 423.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.