434
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Motorcycle active safety systems: Assessment of the function and applicability using a population-based crash data set

ORCID Icon, ORCID Icon & ORCID Icon
Pages 406-412 | Received 22 Oct 2018, Accepted 11 Mar 2019, Published online: 06 May 2019
 

Abstract

Objective: Motorcycles and mopeds, often referred to as powered 2-wheelers (PTWs), play an important role in personal mobility worldwide. Despite their advantages, including low cost, space occupancy, and fuel efficiency, the risk of sustaining serious or fatal injuries is higher than that for occupants of passenger cars. The development of safety systems specific for PTWs represents a potential way to reduce casualties among riders. With the proliferation of new active and passive safety technologies, the question as to which might offer the most value is important. In this context, a prioritization process was applied to a set of PTW active safety systems to evaluate their applicability to crash scenarios alone and in combination. The systems included in the study were antilock braking (ABS), autonomous emergency braking (AEB), collision warning, curve warning, and curve assist.

Methods: With the functional performance of the 5 safety systems established, the relevance of each system to specific crash configurations and vehicle movements defined by a standardized accident classification system used in Victoria, Australia, was rated by 2 independent reviewers, with a third reviewer acting as a moderator where disagreements occurred. Ratings ranged from 1 (definitely not applicable) to 4 (definitely applicable). Using population-based crash data, the number and percentage of crashes that each safety system could potentially influence, or be relevant for, was defined. Applying accepted injury costs permitted the derivation of the societal economic cost of PTW crashes and the potential reductions associated with each safety system given a theoretical crash avoidance effectiveness of 100%.

Results: In the 12-year period 2000–2011, 23,955 PTW riders and 1292 pillion passengers were reported to have been involved in a road crash, with over 500 killed and more than 10,000 seriously injured; only 3.5% of riders/pillion passengers were uninjured. The total economic cost associated with these injured riders and pillion passengers was estimated to be AU$11.1 billion (US$7.70 billion; €6.67 billion). The 5 safety systems, as single solutions or in combination, were relevant to 57% of all crashes and to 74% of riders killed. Antilock braking was found to be relevant to the highest number of crashes, with incremental increases in coverage when combined with other safety systems.

Conclusions: The findings demonstrate that ABS, alone and in combination with other safety systems, has the potential to mitigate or possibly prevent a high percentage of PTW crashes in the considered setting. Other safety systems can influence different crash scenarios and are also recommended. Given the high cost of motorcycle crashes and the increasing number of PTW safety technologies, the proposed approach can be used to inform the process of selection of the most suitable interventions to improve PTW safety.

Acknowledgment

The authors acknowledge Mark Russell, VicRoads, for permission to use the crash data.

Additional information

Funding

GS was supported by the European Commission’s Seventh Framework Programme FP7/2007-2013 under Grant Agreement No. 328067 (ABRAM project).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 331.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.