587
Views
21
CrossRef citations to date
0
Altmetric
Articles

Validation of a simplified human body model in relaxed and braced conditions in low-speed frontal sled tests

, &
Pages 832-837 | Received 28 Nov 2018, Accepted 11 Aug 2019, Published online: 24 Sep 2019
 

Abstract

Objective: The goal of this study was to implement active musculature into the Global Human Body Models Consortium (GHBMC) average male simplified occupant model (M50-OS v2) and validate its performance in low-speed frontal crash scenarios.

Methods: Volunteer and postmortem human subjects (PMHS) data from low-speed frontal sled tests by Beeman et al., including 2.5 and 5.0 g acceleration pulses, were used to simulate events in LS-DYNA. All muscles were modeled as 1D beam elements and assigned a Hill-type muscle material. From the output of proportional–integral–derivative (PID) controllers, the activation level for each muscle was calculated using a sigmoid function, representing the firing rate of motor neurons. The PID controller attempts to preserve the initial posture of the model. Percentage muscle contribution for all skeletal muscles was precalculated using the M50-OS with active muscles (M50-OS + Active). The M50-OS + Active employs varying levels of neural delays to represent volunteer relaxed and braced conditions, taken from literature. Braced condition experiments were simulated using elevated joint angle set values for the PID controller. The M50-OS + Active model was used to simulate 2 muscle conditions (relaxed and braced) at 2 pulse severities (2.5 and 5.0 g). A control set of simulations was conducted to compare the effect of adding active muscle. Ten whole-body simulations were conducted.

Results: The results from volunteer simulations showed a strong dependence of reaction loads and kinematics on muscle activation. Compared to baseline, M50-OS, at 5.0 g acceleration, 33.3% and 7.6% decreases were observed in the overall head kinematics of the M50-OS + Active for the braced and relaxed conditions, respectively. Regarding the anterior direction, similar reductions in overall kinematics were observed for both volunteer test conditions. In comparison to control simulations in which no active muscle was implemented, objective evaluation scores increased markedly at both speeds for the braced condition. Little to no gain was found in the relaxed condition.

Conclusions: The results justify the need for use of an active human body model for predicting low-speed frontal kinematics, particularly in the braced condition. Head kinematics were reduced when using active modeling for all simulations (braced and relaxed).

Disclosure

Scott Gayzik is a member of Elemance, LLC., which distributes academic and commercial licenses for the use of GHBMC-owned computational human body models.

Acknowledgments

The authors gratefully acknowledge the contributions of Andrew Kemper of Virginia Tech for his input on the experimental condition modeled. The authors also thank Dr. Fang Chi Hsu of Wake Forest Health Sciences for her assistance in the statistical analysis. All simulations were run on the DEAC cluster at Wake Forest University with support by Stevens Cody and Adam Carlson.

Additional information

Funding

This work was supported by the Global Human Body Models Consortium, LLC and NHTSA under GHBMC Project No. WFU-006.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 331.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.