700
Views
7
CrossRef citations to date
0
Altmetric
Articles

A study on cyclist head injuries based on an electric-bicycle to car accident reconstruction

, , , , & ORCID Icon
Pages 563-568 | Received 18 Dec 2019, Accepted 07 Sep 2020, Published online: 14 Oct 2020
 

Abstract

Objective

In China, the electric-bicycle (E-bike) has become one of the most common modes of travel. However, the safety of E-bike has not received sufficient attentions, especially in the area of protection of the cyclists’ head.

Methods

In this study, an E-bike-to-car accident was reconstructed using MADYMO and LS-DYNA software and head injuries of the cyclist were analyzed. A multi-rigid body model in MADYMO and a head to windshield impact finite element (FE) model using LS-DYNA were separately developed to achieve objectives of the work.

Results

Kinematic responses of the cyclist were predicted by the multi-rigid body model to obtain the best reconstructed results compared to those given in the accident report, and the instantaneous linear and angular relative velocities at the onset of contact between the head and windshield, which were used as input loading conditions to the FE model, were obtained. The maximum principal strain (MPS) of skull, and intracranial pressure (ICP), von-Mises stress and MPS (Maximum principal strain) of brain tissue were predicted by the FE model for the head injuries analyses.

Conclusions

The results of accident reconstruction in this study case showed that: (1) The head impact region on the windshield in the E-bike-to-car impact accidents is higher than that in the pedestrian-to-car impact accidents. (2) The skull MPS, ICP, von-Mises stress and MPS of strain can accurately predict the head injury risk, location, etc. (3) The directly impact force caused the skull fracture, and the tensile inertial force torn bridge vein resulting in the subdural hematoma on the opposite side of impact in this accident. (4) The models developed in this study were validated against the reconstructed accident and can be used for further study on head injuries of E-bike’s cyclist and helmet design.

Additional information

Funding

The authors at the Hunan University would like to thank the financial support of this study from Innovative Research Groups of National Natural Science Foundation of China (Grant No. 51621004), National Natural Science Foundation of China (Grant No. 51405148), Natural Science Foundation of Hunan Province (Grant No. 2020JJ4184).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 331.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.