214
Views
2
CrossRef citations to date
0
Altmetric
Articles

Analysis of 6YO pediatric human body model kinematics and kinetics to determine submarining across naturalistic seating postures

, , , & ORCID Icon
Pages S111-S116 | Received 02 Mar 2022, Accepted 18 Jun 2022, Published online: 21 Jul 2022
 

Abstract

Objectives

The aim of this study was to analyze the kinematics and kinetics of a naturalistically seated 6-year-old (6YO) pediatric human body model and evaluate the metrics described by earlier studies for pediatric ATDs to indicate whether different postures and booster seats were more associated with submarining than others in a frontal impact.

Methods

The PIPER 6YO pediatric human body model was restrained on a lowback (LBB) and a highback (HBB) booster child restraint seat (CRS) in four naturalistic seating postures: leaning-forward, leaning-inboard, leaning-outboard, and a pre-submarining posture, and a baseline reference seating position as per the FMVSS No. 213 protocol. A 2012 mid-size sedan finite element (FE) model was used as the vehicle environment. A standard 3-point lap-shoulder belt system was modeled to restrain the child and the CRS in the left-rear vehicle seat. Additionally, a No-CRS condition was modeled in a reference posture and pre-submarining posture in which the occupant’s legs bent over the edge of the rear seat. 12 conditions were simulated in LS-DYNA R10.1.0, and kinematics and kinetics were compared to metrics as per prior literature: 1) maximum femur displacement and pelvis rotation, 2) maximum knee-head excursion and maximum change in torso angle, 3) lap belt trajectory relative to pelvis’s coordinate frame.

Results

The pre-submarining posture on the HBB depicted submarining in all metrics except for the lap belt trajectory. Only the pre-submarining posture in No-CRS depicted submarining through analysis of all metrics. For this pre-submarining No-CRS condition, the mid-abdominal compression was approximately 5 times greater than the average of the mid abdominal compression depths of all other cases and maximum abdominal pressure was at least 22.9 kPa higher than the rest of the conditions.

Conclusions

The results of this study suggest that metrics used to assess submarining for 6YO pediatric occupants in frontal impacts may need to be updated so that they are more accurate for both simulated and physical studies. In addition, the results of this study could be used to design booster seats that discourage postures that could lead to an increased likelihood of submarining-like characteristics in a frontal crash impact.

Acknowledgments

The authors would like to acknowledge the National Science Foundation (NSF) Center for Child Injury Prevention Studies I/UCRC at the Children’s Hospital of Philadelphia (CHOP) and the Ohio State University (OSU) for sponsoring this study and its Industry Advisory Board (IAB) members for their support, valuable input, and advice. The views presented here are solely those of the authors and not necessarily the views of CHOP, CIRP, OSU, the NSF, or the IAB members.

Data availability statement

The authors confirm that the data supporting the findings of this study is available within the article and its supplementary materials.

Additional information

Funding

Center for Child Injury Prevention Studies (CChIPS).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 331.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.