206
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Evaluation of Brain Rotational Injury Criteria (BrIC) in vehicle frontal crashes

, , , , &
Pages 57-64 | Received 27 Jul 2023, Accepted 02 Sep 2023, Published online: 14 Sep 2023
 

Abstract

Objective

The objective of this study was to estimate strains in the human brain in regulatory, research, and due care frontal crashes by simulating those impacts. In addition, brain strain simulations were estimated for belted human volunteer tests and in impacts between two players in National Football League (NFL), some with no injury and some with mild Traumatic Brain Injuries (mTBI).

Methods

The brain strain responses were determined using version 5 of the Global Human Body Modeling Consortium (GHBMC) 50th percentile human brain model. One hundred and sixty simulations with the brain model were conducted using rotational velocities and accelerations of Anthropomorphic Test Devices (ATD’s) or those of human volunteers in sled or crash tests, as inputs to the model and strain related responses like Maximum Principal Strains (MPS) and Cumulative Strain Damage Measure (CSDM) in various regions of the brain were monitored. The simulated vehicle tests ranged from sled tests at 24 and 32 kph delta-V with three-point belts without airbags to full scale crash and sled tests at 56 kph and a series of Research Mobile Deformable Barrier (RMDB) tests described in Prasad et al.

Results

The severity of rotational input into the model as represented by BrIC, averaged between 0.5 and 1.2 for the various test conditions, and as high as 1.5 for an individual case. The MPS responses for the various test conditions averaged between 0.28 and 0.86 and as high as 1.3 in one test condition. The MPS responses in the brain for volunteers, low velocity sled, and NCAP tests were similar to those in the no-mTBI group in the NFL cases and consistent with real world accident data. The MPS responses of the brain in angular crash and sled tests were similar to those in the mTBI group.

Conclusions

The brain strain estimations do not indicate the likelihood of severe-to-fatal brain injuries in the crash environments studied in this paper. However, using the risk functions associated with BrIC, severe-to-fatal brain injuries (AIS4+) are predicted in several environments in which they are not observed or expected.

Acknowledgments

The data and analysis presented in this paper took several years to compile. In the initial phases of the study, Jason Gainey of VW shared his compilation of 65 RMDB crash tests with the authors through the Alliance of Automobile Manufacturers. Nirmal Muralidharan, formerly at Ford Motor Co., conducted preliminary analysis and simulation of volunteer, NFL, and crash tests. Tim Barrette of Ford Motor Co. provided statistical insight into the data. To all the above the authors are greatly indebted.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 331.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.