451
Views
10
CrossRef citations to date
0
Altmetric
Articles

Enhancement of thermal conductivity and tensile strength of liquid silicone rubber by three-dimensional alumina network

ORCID Icon, , &
Pages 297-307 | Received 28 Nov 2018, Accepted 10 Mar 2019, Published online: 03 Apr 2019
 

ABSTRACT

Rapidly increasing demands for higher integration density and stability of electronic devices embrace higher requirements for thermally conductive silicone rubber, which is promisingly used in ultra-thin components. In this work, alumina whiskers (AWs) and alumina flakes (AFs) are used to modify liquid silicone rubber (LSR) by fabricating binary (AFs/LSR) or ternary (AWs/AFs/LSR) composites. The thermal conductivity and mechanical strength of the binary and ternary composites were investigated. Thermal conductivity of the binary AFs/LSR composite (25AFs/LSR) was 0.1990 W m−1 K−1, while the thermal conductivity of the ternary AFs/AWs/LSR composite (20AFs/5AWs/LSR) was 0.2655 W m−1 K−1. Furthermore, the tensile strength of the ternary AWs/AFs/LSR composites increased by 180.9% as compared with the binary system, increased to 7.81 MPa from 2.78 MPa due to the introduction of 1 wt% AWs. As a reason, a significant synergistic effect of AWs and AFs in the enhancement of both thermal and mechanical properties of the LSR was proved. Furthermore, the dielectric property measurements demonstrated that the ternary composites exhibited a lower dielectric constant and dielectric loss, indicating that the AWs/AFs/LSR composites were qualified to be applied in the field of electronic devices.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 583.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.