112
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effects of oxidation degree on the physicochemical properties of xanthan gum hydrogels containing N,O-carboxymethyl chitosan

, , , , , & show all
Pages 229-236 | Received 20 Nov 2022, Accepted 13 Apr 2023, Published online: 25 Jul 2023
 

ABSTRACT

Most xanthan gum-based hydrogels are crosslinked by physical methods, but they typically have inadequate mechanical strength and low thermal, pH, and salt stability. To improve the physicochemical properties of XG-based hydrogels, this study applied periodate oxidation of XG to produce ring-opened products with dialdehyde groups for forming chemically crosslinked hydrogels. The research investigated the effects of oxidized xanthan gum (OXG) at different degrees on the properties of its hydrogels with N,O-carboxymethyl chitosan (NOCC), a water-soluble chitosan derivative. Results show that the rigidity and brittleness of NOCC/OXG hydrogels were enhanced with the increased oxidation of XG. Additionally, the swelling ratio of NOCC/OXG hydrogels was increased by 3.5 times and the degradation rate was reduced by 1.5 times. These hydrogels are promising biomaterials for drug delivery, cell therapy, or tissue regeneration applications.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was supported by Vietnam National University Ho Chi Minh City (VNUHCM) [grant number NCM2020-28-01].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 583.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.