424
Views
27
CrossRef citations to date
0
Altmetric
Articles

Vibration and static buckling behavior of variable thickness flexoelectric nanoplates

, , , &
Pages 7102-7130 | Received 18 Apr 2022, Accepted 05 Jun 2022, Published online: 28 Jul 2022
 

Abstract

The nanoplates have been used extensively in electronic devices, during the working process they can be affected by external forces. To enhance the working performance of mechanical systems, flexoelectric effects are usually added, therefore, it is necessary to study the mechanical behavior of these material structures under the effect of these effects. This is the first research to examine the vibration response and static buckling of variable flexoelectric nanoplates using the FEM and novel shear deformation theory type hyperbolic sine functions, where the thickness is adjusted by linear and nonlinear rules. This is a simple theory, which does not need any shear correction factors, while the mechanical responses of the structures are still described exactly. The numerical results of this work are compared with those of the analytical approach and other methods. Then, the influences of geometrical and material parameters on the free vibration and static bucking of the structure are explored. The data shows that the flexoelectric effect has a strong effect on the free vibration and static bucking behavior as well as the vibration mode shapes of the nanoplates. The working performance is increased when taking into account the effect of flexoelectricity. This work also shows that for each changing rule of plate thickness, the flexoelectric effect also significantly changes the mechanical response of the plate. This is an important suggestion in the design and use of plate structures in engineering practice.

Conflict of interest

The authors declare that they have no conflict of interest.

Data availability

Data used to support the findings of this study are included in the article.

Additional information

Funding

This study was funded by Vietnam National Foundation for Science and Technology Development – NAFOSTED (grant number 107.02-2020.18).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 643.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.