174
Views
3
CrossRef citations to date
0
Altmetric
Articles

Study on energy absorption characteristics of expansion tube with light magnesium alloy

, &
Pages 425-446 | Received 14 Mar 2022, Accepted 20 Aug 2022, Published online: 30 Aug 2022
 

Abstract

This paper proposed a lightweight magnesium alloy expansion energy-absorbing structure. The structure adopts lightweight materials, which can greatly reduce its own weight on the basis of ensuring energy absorption performance. Firstly, the geometric model of structure is designed and the corresponding physical prototype is processed. The theoretical model of magnesium alloy expansion tube is studied, and the main mechanical response is analyzed. Then the structural mechanical properties are studied by quasi-static compression test. Combined with the theoretical model, several typical deformation stages in expanding are analyzed. The effects of geometric parameters on the energy absorption performance are studied. The results show that with the increase of die angle, die expansion size and tube thickness, the maximum peak force, average force, energy absorption and specific energy absorption increase. Then the test results are compared with the corresponding theoretical steady force to verify the applicability of the theoretical model. The theoretical values are basically in good agreement with the experimental values. The error of all results is within 10%. Finally, comparing the characteristics of magnesium alloy, aluminum alloy and steel energy absorbing tube with the same quality, it is concluded that the specific energy absorption of magnesium alloy structure is 31.6% and 4.1% higher than that of steel and aluminum respectively, and magnesium alloy tube has higher specific energy absorption.

Additional information

Funding

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (51975588). The research was supported By Postgraduate Innovative Project of Central South University.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 643.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.