203
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Free vibration analysis of functionally graded carbon nanotubes reinforced double plates

ORCID Icon, , ORCID Icon & ORCID Icon
Pages 4211-4240 | Received 12 Dec 2023, Accepted 09 Jan 2024, Published online: 05 Feb 2024
 

Abstract

The specific objective of this study is to analyze the dynamics of functionally graded carbon nanotubes (FGCNT) reinforced double plates. Connected via an elastic layer, the plates have simply supported boundary conditions. In the current study, three carbon nanotubes functionally graded patterns, varying in the thickness direction are considered, including uniformly distributed, functionally graded O-pattern, and functionally graded X-pattern. Following the development of the coupled equations of motion using the Hamilton principle while considering the influences of the elastic layer, the equations are subsequently solved utilizing a two-spatial-variable modal decomposition method. For verification purposes, the equations developed are compared to simplified configurations provided in the existing studies. The solution methodology is verified through comparing against numerical results of simplified configurations of plates obtained from the development of the finite element method and existing studies. Both verifications have shown very good agreement. Influences of plates’ dimensions, carbon nanotubes reinforcement, and the stiffness of elastic layer are analyzed and provided in this study. The transverse-motion natural frequencies of the double plates are also identified, and they follow a decreasing trend as the aspect ratio increases for all the cases. The fundamental lateral-motion and axial-motion natural frequency also follows a similar trend as the aspect ratio increases. The reinforcement effect of carbon nanotubes on the transverse-motion natural frequencies is less obvious for thinner plates. An increase in the elastic layer stiffness increases the second series transverse-motion natural frequencies of the double-plate system. Among the considered functionally graded patterns, the functionally graded X-pattern reinforcement provides the largest increase in the transverse-motion natural frequencies.

Acknowledgment

We express our gratitude for the support provided by The University of Adelaide through the Adelaide Graduate Research Scholarship.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 643.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.