441
Views
4
CrossRef citations to date
0
Altmetric
Low-Dimensional Solids and Molecular Crystals

Estimation of surface roughness for transparent superhydrophobic coating through image processing and machine learning

, ORCID Icon, &
Pages 90-104 | Published online: 25 Jun 2021
 

Abstract

In the current era, superhydrophobic surfaces/coatings have gained significant attention worldwide due to their exclusive features such as self-cleaning, anti-corrosion, anti-adhesion, anti-reflection, and anti-icing, etc. The idea of the self-cleaning mechanism of superhydrophobic coatings has emerged from the self-cleaning effect of lotus plant leaves. The superhydrophobic surfaces have a great ability to eliminate dust, bacteria, and viruses due to the very large contact angle (> 150°) between the surface and the water droplets. The present study is based on the surface roughness estimation of field emission scanning electron microscope (FESEM) images of the developed superhydrophobic coatings via image processing and machine learning approach. Transparent superhydrophobic coatings of functionalized SiO2 nanoparticles embedded polystyrene (PS) and dual functionalized ZnO nanoparticles embedded PS were prepared using a modified sol-gel approach. The superhydrophobicity of the synthesized coatings was realized by the large contact angles of more than 150° between water droplets and the coatings. The FSESM images of the superhydrophobic coatings were processed using MATLAB 2018 image processing and machine learning tool to compute the roughness by computational algorithms. The discrete wavelet processing was used for image segmentation, and k-means clustering was applied for predicting the roughness score against different compositions of the coatings. The computational methods exhibited ∼ 91.70% accuracy of the surface roughness estimation of the coatings.

Conflict of interests

The authors declare that there is no conflict of interest regarding the publication of this paper.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 2,387.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.