181
Views
9
CrossRef citations to date
0
Altmetric
Articles

Temperature effect on peanut (Arachis hypogaea L.) transpiration response to vapor pressure deficit and its recovery

, &
Pages 177-186 | Received 31 Oct 2018, Accepted 23 Nov 2018, Published online: 11 Dec 2018
 

ABSTRACT

Partial stomata closure under high atmospheric vapor pressure deficit (VPD) has been identified as a means to conserve soil water to allow sustained crop physiological activity late in the growing season, especially during reproductive growth. This trait has been identified as potentially being particularly important in peanut (Arachis hypogaea L.) since peanut is commonly grown on sandy soils under variable rainfall conditions. While 11 peanut genotypes had been previously identified as expressing limited-transpiration trait (TRlim) at 32°C, there is no information on their response to VPD at higher temperatures to which peanut may be exposed. This study documented the response of these 11 genotypes to VPD when subjected to increasing temperatures at 2°C intervals from 32°C to 38°C. Nine of the 11 genotypes lost expression of the TRlim trait within this temperature range. Only two genotypes (N013042ol and G644) were able to sustain the TRlim trait at 38°C. Recovery of expression of the TRlim trait following the loss of the trait at high temperature also varied among genotypes. Three genotypes that lost expression of TRlim at 36°C were returned to 32°C to determine the ability to recover the trait. Two genotypes showed full recovery of TRlim within 1 or 2 days, whereas the third showed no recovery across 3 days. This study provides useful information on genotypic variability in transpiration response to VPD under high temperatures that can be applied in developing cultivars that are better suited to water-limited conditions.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by the North Carolina Peanut Growers Association.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 503.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.