159
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

QTL and genomic prediction accuracy for grain yield and secondary traits in a maize population under heat and heat-drought stresses

ORCID Icon, , , , , , & show all
Pages 709-734 | Received 27 Jan 2022, Accepted 06 Nov 2022, Published online: 18 Nov 2022
 

ABSTRACT

Heat and drought stresses negatively affect maize (Zea mays L.) productivity. We aimed to identify the genetic basis of tolerance to heat stress (HS) and combined heat and drought stress (HS+DS) and compare how QTL and whole genome selection (GS) could be leveraged to improve tolerance to both stresses. A set of 97 testcross hybrids derived from a maize bi-parental doubled-haploid population was evaluated during the summer seasons of 2014, 2015, and 2016 in Ciudad Obregon, Sonora, Mexico, under HS and HS+DS. Grain yield (GY) reached 5.7 t ha−1 under HS and 3.0 t ha−1 under HS+DS. Twenty-six QTL were detected across six environments, with LOD scores ranging from 2.03 to 3.86; the QTL explained 8.6% to 18.6% of the observed phenotypic variation. Hyperspectral biomass and structural index (HBSI) had higher genetic correlation with GY for HS (r = 0.97) and HS+DS (r = 0.74), relative to the correlation with crop water mass or greenness indices. Genetic correlations between GY and canopy temperature for HS (r = −0.89) and HS+DS (r = −0.75) or vegetation indices, along with clusters of QTL in bins 1.02, 1.05, and 2.05, underline the importance of these genomic areas for secondary traits associated with general vigor and greenness. Prediction accuracy of the model used for GS had values below those found in previous studies. We found a high-yielding hybrid that was tolerant to HS and HS+DS.

Acknowledgments

We thank Oscar Garcia and Felipe Espinoza for technical assistance with the trials; Ivan Ortiz-Monasterio and Rodrigo Rascon for hosting the experiments at the Ciudad Obregon experimental station.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This study was funded by the Research Program on Climate Change Agriculture and Food Security (CCAFS), the CGIAR research program for maize (MAIZE), the Bill and Melinda Gates Foundation. SAGARPA (MasAgro).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 503.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.